Ir al contenido

Documat


Measurable diagonalization of positive definite matrices

  • Yamilet Quintana [2] ; José Manuel Rodríguez García [1] Árbol académico
    1. [1] Universidad Carlos III de Madrid

      Universidad Carlos III de Madrid

      Madrid, España

    2. [2] Departamento de Matemáticas Puras y Aplicadas, Edificio Matemáticas y Sistemas (MYS), Apartado Postal: 89000, Caracas 1080 A, Universidad Simón Bolívar, Venezuela
  • Localización: Journal of approximation theory, ISSN 0021-9045, Vol. 185, Nº 1, 2014, págs. 91-97
  • Idioma: inglés
  • DOI: 10.1016/j.jat.2014.06.003
  • Enlaces
  • Resumen
    • In this paper we show that any positive definite matrix V with measurable entries can be written as V=UɅU* , where the matrix is diagonal, the matrix U is unitary, and the entries of U and Ʌ are measurable functions (U* denotes the transpose conjugate of U).

      This result allows to obtain results about the zero location and asymptotic behavior of extremal polynomials with respect to a generalized non-diagonal Sobolev norm in which products of derivatives of different order appear. The orthogonal polynomials with respect to this Sobolev norm are a particular case of those extremal polynomials.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno