Ir al contenido

Documat


Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes

  • Autores: Tuomas P. Hytönen, Olli Tapiola
  • Localización: Journal of approximation theory, ISSN 0021-9045, Vol. 185, Nº 1, 2014, págs. 12-30
  • Idioma: inglés
  • DOI: 10.1016/j.jat.2014.05.017
  • Enlaces
  • Resumen
    • In any quasi-metric space of homogeneous type, Auscher and Hyt¨onen recently gave a construction of orthonormal wavelets with H¨older-continuity exponent ç > 0. However, even in a metric space, their exponent is in general quite small. In this paper, we show that the H¨older-exponent can be taken arbitrarily close to 1 in a metric space. We do so by revisiting and improving the underlying construction of random dyadic cubes, which also has other applications.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno