Ir al contenido

Documat


Two modeling strategies for empirical Bayes estimation

  • Autores: Bradley Efron
  • Localización: Statistical science, ISSN 0883-4237, Vol. 29, Nº. 2, 2014, págs. 285-301
  • Idioma: inglés
  • DOI: 10.1214/13-sts455
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Empirical Bayes methods use the data from parallel experiments, for instance, observations Xk ¡« N(Θk, 1) for k = 1, 2, . . . , N, to estimate the conditional distributions Θk|Xk. There are two main estimation strategies:

      modeling on the ¦È space, called ¡°g-modeling¡± here, and modeling on the x space, called ¡°f -modeling.¡± The two approaches are described and compared. A series of computational formulas are developed to assess their frequentist accuracy. Several examples, both contrived and genuine, show the strengths and limitations of the two strategies.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno