Ir al contenido

Documat


Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements

  • Autores: D. M. Williams, L. Shunn, A. Jameson
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 266, Nº 1, 2014, págs. 18-38
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2014.01.007
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Sphere close packed (SCP) lattice arrangements of points are well-suited for formulating symmetric quadrature rules on simplexes, as they are symmetric under affine transformations of the simplex unto itself in 2D and 3D. As a result, SCP lattice arrangements have been utilized to formulate symmetric quadrature rules with Np = 1, 4, 10, 20, 35, and 56 points on the 3-simplex (Shunn and Ham, 2012). In what follows, the work on the 3-simplex is extended, and SCP lattices are employed to identify symmetric quadrature rules with Np = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, and 66 points on the 2-simplex and Np = 84 points on the 3-simplex. These rules are found to be capable of exactly integrating polynomials of up to degree 17 in 2D and up to degree 9 in 3D.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno