Ir al contenido

Documat


Reprint of �Nesterov�s algorithm solving dual formulation for compressed sensing�

  • Autores: Feishe Chen, Lixin Shen, Bruce W. Suter, Yuesheng Xu
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 265, Nº 1, 2014, págs. 52-68
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2014.01.012
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We develop efficient algorithms for solving the compressed sensing problem. We modify the standard .1 regularization model for compressed sensing by adding a quadratic term to its objective function so that the objective function of the dual formulation of the modified model is Lipschitz continuous. In this way, we can apply the well-known Nesterov algorithm to solve the dual formulation and the resulting algorithms have a quadratic convergence. Numerical results presented in this paper show that the proposed algorithms outperform significantly the state-of-the-art algorithm NESTA in accuracy.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno