Ir al contenido

Documat


Using crises, feedback, and fading for online task design.

  • Autores: Christian Bokhove
  • Localización: PNA: Revista de investigación en didáctica de la matemática, ISSN-e 1887-3987, Vol. 8, Nº. 4, 2014, págs. 127-138
  • Idioma: español
  • DOI: 10.30827/pna.v8i4.6111
  • Títulos paralelos:
    • Uso de crisis, realimentación y desvanecimiento para el diseño de tareas en línea.
  • Enlaces
  • Resumen
    • español

      Una discusión reciente implica la elaboración de posibles principios para el diseño de secuencias de tareas. Este documento se basa en tres principios, descritos en Bokhove y Drijvers (2012a). Un modelo que comprende las componentes de crisis, realimentación y desvanecimiento de secuencias con tareas muy similares puede ser utilizado para abordar tanto la fluidez procedimental como la comprensión conceptual en un entorno en línea. Además de estar fundamentado teóricamente, esto se demuestra mediante el análisis de un ejemplo de caso de un estudio realizado en nueve centros educativos de los Países Bajos. Junto con los resultados cuantitativos del estudio subyacente, se muestra que el modelo descrito podría ser una incorporación útil en el repertorio del diseño de tareas.

    • English

      A recent discussion involves the elaboration on possible design principles for sequences of tasks. This paper builds on three principles, as described by Bokhove and Drijvers (2012a). A model with ingredients of crises, feedback and fading of sequences with near-similar tasks can be used to address both procedural fluency and conceptual understanding in an online environment.

      Apart from theoretical underpinnings, this is demonstrated by analyzing a case example from a study conducted in nine schools in the Netherlands. Together with quantitative results of the underlying study, it is showed that the model described could be a fruitful addition to the task design repertoire.

  • Referencias bibliográficas
    • Anderson, J. R., & Schunn, C. D. (2000). Implications of the ACT-R learning theory: no magic bullets. In R. Glaser (Ed.), Advances in...
    • Black, P., & Wiliam, D. (1998). Inside the black box: Raising standards through classroom assessment. Phi Delta Kappan, 80(2), 139-149.
    • Bokhove, C. (2008, June). Use of ICT in formative scenarios for algebraic skills. Paper presented at the 4th conference of the International...
    • Bokhove, C., & Drijvers, P. (2010). Symbol sense behavior in digital activities. For the Learning of Mathematics, 30(3), 43-49.
    • Bokhove, C., & Drijvers, P. (2012a). Effects of feedback in an online algebra intervention. Technology, Knowledge and Learning, 17(1-2),...
    • Bokhove, C., & Drijvers, P. (2012b). Effects of a digital intervention on the development of algebraic expertise. Computers & Education,...
    • Brousseau, G. (1997). Theory of didactical situations in mathematics 1970-1990. Dordrecht, The Netherlands: Kluwer.
    • Clifford, M. M. (1984). Thoughts on a theory of constructive failure. Educational Psychologist, 19(2), 108-120.
    • De Jong, T. (2010). Cognitive load theory, educational research, and instructional design: Some food for thought. Instructional Science, 38(2),...
    • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112.
    • Kapur, M (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523-550.
    • Kapur, M. (2011). A further study of productive failure in mathematical problem solving: Unpacking the design components. Instructional Science,...
    • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work. Educational Psychologist,...
    • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
    • Lagrange, J.-B. (2002). Etudier les mathématiques avec les calculatrices symboliques. Quelle place pour les techniques? [Studying mathematics...
    • Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts of learning, education, and human...
    • Piaget, J. (1964). Development and learning. In R. E. Ripple & V. N. Rockcastle (Eds.), Piaget rediscovered (pp. 7-20). New York, NY:...
    • Renkl, A. (2005). The worked-out-example principle in multimedia learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning...
    • Renkl, A., Atkinson, R. K., & Große, C. S. (2004). How fading worked solution steps works-A cognitive load perspective. Instructional...
    • Runesson, U. (2005). Beyond discourse and interaction. Variation: A critical aspect for teaching and learning mathematics. The Cambridge Journal...
    • Schoenfeld, A. H. (2009). Bridging the cultures of educational research and design. Educational Designer, 1(2). Retrieved from http://www.educationaldesigner.org/ed/volume1/issue2/article5
    • Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12(2), 257-285. doi:10.1016/0364-0213(88)90023-7
    • Tall, D. (1977, February). Cognitive conflict and the learning of mathematics. Paper presented at the First Conference of The International...
    • Van Hiele, P. M. V. (1985). Structure and insight: A theory of mathematics education. Orlando, FL: Academic Press.
    • Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to structure sense-making. Mathematical...
    • Watson, A., & Ohtani, M. (2012). Task design in mathematics education. Discussion document. Retrieved from http://ncm.gu.se/media/ncm/dokument/...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno