Ir al contenido

Documat


The Sensitivity of machine learning techniques to variations in sample size: a comparative analysis

  • Javier de Andrés Suárez [1] Árbol académico ; Pedro Lorca Fernández [1] ; Elías Fernández Combarro Álvarez [1] Árbol académico
    1. [1] Universidad de Oviedo

      Universidad de Oviedo

      Oviedo, España

  • Localización: The International Journal of Digital Accounting Research, ISSN 1577-8517, Vol. 2, Nº. 4, 2002, págs. 131-155
  • Idioma: inglés
  • DOI: 10.4192/1577-8517-v2_5
  • Enlaces
  • Resumen
    • A comparative analysis of the performance of some well-known classification techniques (Discriminant Analysis, Quinlan's See5, and Neural Networks) and certain machine learning systems of recent development (ARNI, FAN and SVM) is conducted. The chosen classification task is the forecasting of the level of efficiency of Spanish commercial and industrial companies. Assignment of the firms is made upon the basis of a set of financial ratios, which make a high dimension feature space with low separability degree. In the present research the effects on the accuracy of variations of each technique in the estimation sample size are measured. The main results suggest that ARNI and See5 yield the best results, even with small sample sizes.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno