Ir al contenido

Documat


Interpolation of two-dimensional curves with Euler spirals

  • Autores: Dale Connor, Lilia Krivodonova
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 261, Nº 1, 2014, págs. 320-332
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2013.11.009
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We propose an algorithm for the interpolation of two-dimensional curves using Euler spirals. The method uses a lower order reconstruction to approximate solution derivatives at each sample point. The computed tangents are then used to connect consecutive points with segments of Euler spirals. The resulting interpolation is G1 in regions where the curve being interpolated is smooth. The algorithm uses an adaptive stencil which allows it to construct an approximation free of oscillations near discontinuities in the function or its derivatives. The approximation is based on geometrical shapes which makes it particularly suitable for two-dimensional curves.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno