Ir al contenido

Documat


Construction of algebraically stable DIMSIMs

  • Autores: Giuseppe Izzo, Zdzislaw Jackiewicz
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 261, Nº 1, 2014, págs. 72-84
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2013.10.037
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The class of general linear methods for ordinary differential equations combines the advantages of linear multistep methods (high efficiency) and Runge�Kutta methods (good stability properties such as A-, L-, or algebraic stability), while at the same time avoiding the disadvantages of these methods (poor stability of linear multistep methods, high cost for Runge�Kutta methods). In this paper we describe the construction of algebraically stable general linear methods based on the criteria proposed recently by Hewitt and Hill. We also introduce the new concept of .-algebraic stability and investigate its consequences.

      Examples of .-algebraically stable methods are given up to order p = 4.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno