Ir al contenido

Documat


A note on the one-step estimator for ultrahigh dimensionality

  • Autores: Mingqiu Wang, Xiuli Wang, Xiaoguang Wang
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 260, Nº 1, 2014, págs. 91-98
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2013.09.037
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The one-step estimator, covering various penalty functions, enjoys the oracle property with a good initial estimator. The initial estimator can be chosen as the least squares estimator or maximum likelihood estimator in low-dimensional settings. However, it is not available in ultrahigh dimensionality. In this paper, we study the one-step estimator with the initial estimator being marginal ordinary least squares estimates in the ultrahigh linear model.

      Under some appropriate conditions, we show that the one-step estimator is selection consistent. Finite sample performance of the proposed procedure is assessed by Monte Carlo simulation studies.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno