Ir al contenido

Documat


Recovering the good component of the Hilbert scheme

  • Autores: Torsten Ekedahl, Roy Mikael Skjelnes
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 179, Nº 3, 2014, págs. 805-841
  • Idioma: inglés
  • DOI: 10.4007/annals.2014.179.3.1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give an explicit construction, for a flat map XåS of algebraic spaces, of an ideal in the n �th symmetric product of X over S . Blowing up this ideal is then shown to be isomorphic to the schematic closure in the Hilbert scheme of length n subschemes of the locus of n distinct points. This generalizes Haiman�s corresponding result for the affine complex plane. However, our construction of the ideal is very different from that of Haiman, using the formalism of divided powers rather than representation theory. In the nonflat case we obtain a similar result by replacing the n �th symmetric product by the n �th divided power product


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno