Ir al contenido

Documat


On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras

  • Autores: Manuel Ceballos González Árbol académico, David A. Towers Árbol académico
  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 218, Nº 3, 2014, págs. 497-503
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2013.06.017
  • Enlaces
  • Resumen
    • In this paper, the main objective is to compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional supersolvable Lie algebras.Wecharacterise the maximal abelian subalgebras of solvable Lie algebras and study solvable Lie algebras containing an abelian subalgebra of codimension 2. Finally, we prove that nilpotent Lie algebras with an abelian subalgebra of codimension 3 contain an abelian ideal with the same dimension, provided that the characteristic of the underlying field is not 2. Throughout the paper, we also give several examples to clarify some results.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno