Ir al contenido

Documat


Conditional characteristic functions of molchan-golosov fractional lévy processes with application to credit risk

  • Autores: Holger Fink
  • Localización: Journal of Applied Probability, ISSN-e 0021-9002, Vol. 50, Nº. 4, 2013, págs. 983-1005
  • Idioma: inglés
  • DOI: 10.1239/jap/1389370095
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Molchan-Golosov fractional Lévy processes (MG-FLPs) are introduced by way of a multivariate componentwise Molchan-Golosov transformation based on an n-dimensional driving Lévy process. Using results of fractional calculus and infinitely divisible distributions, we are able to calculate the conditional characteristic function of integrals driven by MG-FLPs. This leads to important predictions concerning multivariate fractional Brownian motion, fractional subordinators, and general fractional stochastic differential equations. Examples are the fractional Lévy Ornstein-Uhlenbeck and Cox-Ingersoll-Ross models. As an application we present a fractional credit model with a long range dependent hazard rate and calculate bond prices.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno