Ir al contenido

Documat


Singular Hopf Bifurcation in Systems with Fast and Slow Variables

  • B. Braaksma [1]
    1. [1] University of Hasselt

      University of Hasselt

      Arrondissement Hasselt, Bélgica

  • Localización: Journal of nonlinear science, ISSN 0938-8974, Vol. 8, Nº 5, 1998, págs. 457-490
  • Idioma: alemán
  • DOI: 10.1007/s003329900058
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study a general nonlinear ODE system with fast and slow variables, i.e., some of the derivatives are multiplied by a small parameter. The system depends on an additional bifurcation parameter. We derive a normal form for this system, valid close to equilibria where certain conditions on the derivatives hold. The most important condition concerns the presence of eigenvalues with singular imaginary parts, by which we mean that their imaginary part grows without bound as the small parameter tends to zero. We give a simple criterion to test for the possible presence of equilibria satisfying this condition. Using a center manifold reduction, we show the existence of Hopf bifurcation points, originating from the interaction of fast and slow variables, and we determine their nature. We apply the theory, developed here, to two examples: an extended Bonhoeffer—van der Pol system and a predator-prey model. Our theory is in good agreement with the numerical continuation experiments we carried out for the examples.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno