Ir al contenido

Documat


A nonparametric visual test of mixed hazard models

  • Autores: Jaap Spreeuw, Jens Perch Nielsen Árbol académico, Søren Fiig Jarner
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 37, Nº. 2, 2013, págs. 153-174
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We consider mixed hazard models and introduce a new visual inspection technique capable of detecting the credibility of our model assumptions. Our technique is based on a transformed data approach, where the density of the transformed data should be close to the uniform distribution when our model assumptions are correct. To estimate the density on the transformed axis we take advantage of a recently defined local linear density estimator based on filtered data. We apply the method to national mortality data and show that it is capable of detecting signs of heterogeneity even in small data sets with substantial variability in observed death rates.

  • Referencias bibliográficas
    • Abbring, J. H. and Van den Berg, G. J. (2007). The unobserved heterogeneity distribution in duration analysis. Biometrika, 94 (1), 87–99.
    • Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer-Verlag, New York.
    • Bolancé, C., Guillen, M. and Nielsen, J. P. (2008). Inverse beta transformation in kernel density estimation. Statistics and Probability...
    • Bolancé, C., Guillén, M., Nielsen, J. P. and Gustafsson, J. (2012a). Quantitative Operational Risk Models. Chapman and Hall/CRC Finance...
    • Bolancé, C., Ayuso, M. and Guillén, M. (2012b). A nonparametric approach to analysing operational risk with an application to insurance...
    • Bolancé, C., Guillén, M., Gustafsson, J. and Nielsen, J. P. (2013). Adding prior knowledge to quantitative operational risk models. The...
    • Borgan, O. (1984). Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data. Scandinavian...
    • Buch-Kromann T. and Nielsen, J. P. (2012). Multivariate density estimation using dimension reducing information and tail flattening transformations...
    • Butt, Z. and Haberman, S. (2004). Application of frailty-based mortality models using Generalized Linear Models. ASTIN Bulletin, 34 (1), 175–197.
    • Cairns, A. J. G., Blake, D. and Dowd, K. (2006). A two factor model for stochastic mortality and parameter uncertainty: theory and calibration....
    • Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A. and Balevich, I. (2009). A quantitative comparison of stochastic...
    • Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D. and Khalaf-Allah, M. (2011). Mortality density forecasts: an analysis...
    • Currie, I. D. (2006). Smoothing and forecasting mortality rates with P-splines. Talk given at the Institute of Actuaries, June 2006. http://www.actuaries.org.uk
    • Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., Epstein, D. and Khalaf-Allah, M. (2010a). Evaluating the goodness of fit of stochastic...
    • Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., Epstein, D. and Khalaf-Allah, M. (2010b). Backtesting stochastic mortality models:...
    • Forfar, D. O., McCutcheon, J. J. and Wilkie, A. D. (1988). On graduation by mathematical formula. Journal of the Institute of Actuaries, 115,...
    • Gámiz-Pérez, M. L., Martı́nez-Miranda, M. D. and Nielsen, J. P. (2013a). Smoothing survival densities in practice. Computational Statistics...
    • Gámiz Pérez, M. L, Mammen, E., Martı́nez Miranda, M. D. and Nielsen, J. P. (2013b). Do-validating local linear hazards. Submitted preprint.
    • Gámiz-Pérez, M. L., Janys, L., Martı́nez-Miranda, M. D. and Nielsen, J. P. (2013c). Smooth marker dependent hazard estimation in praxis....
    • Guillén, M., Nielsen, J. P., Scheike, T. H. and Pérez-Marı́n, A. M. (2012). Time-varying effects in the analysis of customer loyalty:...
    • Haberman, S. and Renshaw, A. E. (2011). A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics,...
    • Horiuchi, S. and Coale, A. J. (1990). Age patterns of mortality for older women: an analysis using the agespecific rate of mortality change...
    • Hougaard, P. (1984). Life table methods for heterogeneous populations: distributions describing the heterogeneity. Biometrika, 71 (1), 75–83.
    • Jarner, S. F. and Kryger, E. M. (2011). Modelling adult mortality in small populations: The SAINT model. ASTIN Bulletin, 41 (2), 377–418.
    • Jones, B. L. (1998). A model for analyzing the impact of selective lapsation on mortality. North American Actuarial Journal, 2 (1), 79–86.
    • Kuang D., Nielsen, B. and Nielsen, J. P. (2011). Forecasting in an extended chain-ladder-type model. Journal of Risk and Insurance, 78 (2),...
    • Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U. S. mortality. Journal of the American Statistical Association, 87 (419),...
    • Li, J. S.-H., Hardy, M. R. and Tan, K. S. (2009). Uncertainty in mortality forecasting: an extension of the
    • Lee-Carter approach. ASTIN Bulletin, 39 (1), 137–164.
    • Mammen, E., Martı́nez-Miranda, M. D., Nielsen, J. P. and Sperlich, S. (2011). Do-validation for kernel density estimation. Journal of the...
    • Martı́nez-Miranda, M. D., Nielsen, J. P. and Wüthrich, M. V. (2012). Statistical modelling and forecasting of outstanding liabilities...
    • Nielsen, J. P., Tanggaard, C. and Jones, M. C. (2009). Local linear density estimation for filtered survival data. Statistics, 43 (2), 167–186.
    • Olivieri, A. (2006). Heterogeneity in survival models-applications to pensions and life annuities. Belgian Actuarial Bulletin, 6 (1), 23–39.
    • Pinquet, J., Guillén, M. and Ayuso, M. (2011). Commitment and lapse behavior in long-term insurance: a case study. Journal of Risk and Insurance,...
    • Plat, R. (2009). On stochastic mortality modelling. Insurance: Mathematics and Economics, 45, 393–404.
    • Renshaw, A. E. and Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics...
    • Vaupel, J. W., Manton, K. G. and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography,...
    • Wang, S. and Brown, R. L. (1998). A frailty model for projection of human mortality improvements. Journal of Actuarial Practice, 6, 221–241.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno