Ir al contenido

Documat


Selection and pattern mixture models for modelling longitudinal data with dropout: An application study

  • Autores: Ali Satty, Henry Mwambi
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 37, Nº. 2, 2013, págs. 131-152
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Incomplete data are unavoidable in studies that involve data measured or observed longitudinally on individuals, regardless of how well they are designed. Dropout can potentially cause serious bias problems in the analysis of longitudinal data. In the presence of dropout, an appropriate strategy for analyzing such data would require the definition of a joint model for dropout and measurement processes. This paper is primarily concerned with selection and pattern mixture models as modelling frameworks that could be used for sensitivity analysis to jointly model the distribution for the dropout process and the longitudinal measurement process. We demonstrate the application of these models for handling dropout in longitudinal data where the dependent variable is missing across time. We restrict attention to the situation in which outcomes are continuous. The primary objectives are to investigate the potential influence that dropout might have or exert on the dependent measurement process based on the considered data as well as to deal with incomplete sequences. We apply the methods to a data set arising from a serum cholesterol study. The results obtained from these methods are then compared to help gain additional insight into the serum cholesterol data and assess sensitivity of the assumptions made. Results showed that additional confidence in the findings was gained as both models led to similar results when assessing significant effects, such as marginal treatment effects.

  • Referencias bibliográficas
    • Daniels, M. and Hogan, J. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. CRC: Chapman...
    • Diggle, P. J. and Kenward, M. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics, 43, 49–94.
    • Dmitrienko, A., Offen, W. W., Faries, D., Christy Chuang-Stein, J. L. and Molenberghs G. (2005). Analysis of Clinical Trial Data Using the...
    • Ekholm, A. and Skinner, C. (1998). The muscatine children’s obesity data reanalysed using pattern mixture models. Applied Statistics, 47,...
    • Glynn, R. J., Laird, N. M. and Rubin, D. B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponse. In: Drawing...
    • Heckman, J. J. (1976). The common structure of statistical models of trucation, sample selection and limited dependent variables and a simple...
    • Hedeker, D. and Gibbons, R. D. (1997). Application of random-effects pattern mixture models for missing data in longitudinal studies. Psychological...
    • Hogan, J. and Laird, N. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine,...
    • Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G. and Kenward, M. G. (2006). The nature of sensitivity in missing not at random...
    • Kenward, M. and Molenberghs, G. (1999). Parametric models for incomplete continuous and categorical longitudinal data. Statistical Methods...
    • Kenward, M., Molenberghs, G. and Thijs, H. (2003). Pattern mixture models with proper time dependence. Biometrika, 90, 53–71.
    • Laird, N. M. andWare, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.
    • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125–134.
    • Little, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika, 81, 471– 483.
    • Little, R. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112–1121.
    • Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley.
    • Little, R. J. and Wang, Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics, 52, 98–111.
    • Marini, M. M., Olsen, A. R. and Rubin, D. B. (1980). Maximum likelihood estimation in panel studies with attrition. Sociology Methodology,...
    • McArdle, J. J. and Hamagami, F. (1992). Modeling incomplete longitudinal and cross-sectional data using laten growth structural models. Experimental...
    • Michiels, B., Molenberghs, G. and Lipsitz, S. R. (1999). Selection models and pattern mixture models for incomplete data with covariates....
    • Michiels, B., Molenberghs, G., Bijnens, L., Vangeneugden, T. and Thijs, H. (2002). Selection models and pattern-mixture models to analyze...
    • Molenberghs, G., Michiels, B. and Kenward, M. (1998a). Pseudo-likelihood for combined selection and pattern-mixture models for missing data...
    • Molenberghs, G., Michiels, B., Kenward, M. and Diggle, P. J. (1998b). Missing data mechanism and pattern mixture models. Statistica Neerlandica,...
    • Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York: Springer.
    • Molenberghs, G. and Kenward, M. (2007). Missing Data in Clinical Studies. New York: Wiley.
    • Molenberghs, G., Thijs, H., Kenward, M. G. and Verbeke, G. (2003). Sensitivity analysis of continuous incomplete longitudinal outcomes. Statistics...
    • Molenberghs, G., Kenward, M. G. and Lesaffre, E. (1997). The analysis of longitudinal ordinal data with non-random dropout. Biometrika, 84,...
    • Molenberghs, G., Verbeke, G., Thijs, H., Lesaffre, E. and Kenward, M. (2001). Mastitis in dairy cattle: influence analysis to assess sensitivity...
    • Molenberghs, G., Beunckens, C., Sotto, C. and Kenward, M. (2008). Every missing not at random model has got a missing at random counterpart...
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.
    • Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons.
    • Schafer, J. L. and Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analysts perspective. Multivariate...
    • Schoenfield, L. J. and Lachin, J. M. (1981). The steering committee, and the NCGS group, “Chenodiol (Chenadeoxycholic Acid) for Dissolution...
    • Verbeke, G., Lesaffre, E. and Spiessens, B. (2001). The practical use of different strategies to handle dropout in longitudinal studies. Drug...
    • Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.
    • Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring...
    • Wu, M. C. and Bailey, K. R. (1988). Analysis changes in the presence of informative right censoring caused by death and withdrawal. Statistics...
    • Wu, M. C. and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear...
    • Xu, S. and Blozis, S. A. (2011). Sensitivity analysis of mixed models for incomplete longitudinal data. Journal of Educational and Behavioral...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno