Ir al contenido

Documat


Locally adaptive density estimation on Riemannian manifolds

  • Autores: Guillermo Henry, Andrés Muñoz, Daniela Rodriguez
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 37, Nº. 2, 2013, págs. 111-130
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also considered to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyse two real examples where two different manifolds are considered.

  • Referencias bibliográficas
    • Bai, Z. D., Rao, C. and Zhao, L. (1988). Kernel estimators of density function of directional data. Journal of Multivariate Analysis, 27,...
    • Berger, M., Gauduchon, P. and Mazet, E. (1971). Le Spectre d’une Variété Riemannienne. Springer-Verlag.
    • Boothby, W. M. (1975). An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York.
    • Butler, R. (1992). Paleomagnetism:Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications.
    • Cox, A. and Doell, R. (1960). Review of paleomagnetism, Geological Society of America Bulletin, 71, 645–768.
    • Devroye, L. and Wagner, T. J. (1977). The strong uniform consistency of nearest neighbor density estimates. Annals of Statistics, 3, 536–540.
    • Do Carmo, M. (1988). Geometria Riemaniana. Proyecto Euclides, IMPA. 2a edición.
    • Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of the Royal Society of London, Ser. A, 217, 295– 305.
    • Fisher, N. I., T. Lewis and Embleton, B. J. J. (1987). Statistical Analysis of Spherical Data. New York: Cambridge University Press.
    • Gallot, S., Hulin, D. and Lafontaine, J. (2004). Riemannian Geometry. Springer. Third Edition.
    • Garcı́a-Portugués, E., Crujeiras, R. and Gonzalez-Manteiga, W. (2011). Exploring wind direction and SO2 concentration by circular–linear...
    • Goh, A. and Vidal, R. (2008). Unsupervised Riemannian clustering of probability density functions. Lecture Notes In Artificial Intelligence,...
    • Gray, A. and Vanhecke, L. (1979). Riemannian geometry as determined by the volumes of small geodesic balls. Acta Mathematica, 142, 157–198.
    • Hall, P., Watson, G. S. and Cabrera, J. (1987). Kernel density estimation with spherical data. Biometrika, 74, 751–762.
    • Henry, G. and Rodriguez, D. (2009). Kernel density estimation on Riemannian manifolds: asymptotic results. Journal of Mathematical Imaging...
    • Jammalamadaka, S. and SenGupta, A. (2001). Topics in circular statistics. Multivariate Analysis, 5. World Scientific, Singapore.
    • Joshi, J., Srivastava, A. and Jermyn, I. H. (2007). Riemannian analysis of probability density functions with applications in vision. Proceedings...
    • Love, J. and Constable, C. (2003). Gaussian statistics for palaeomagnetic vectors. Geophysical Journal International, 152, 515–565.
    • Mardia, K. and Jupp, P. (2000). Directional Data. New York: Wiley.
    • Mardia, K. and Sutton, T. (1978). A model for cylindrical variables with applications. Journal of the Royal Statistical Society. Series B....
    • Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33, 1065–1076.
    • Pelletier, B. (2005). Kernel density estimation on Riemannian manifolds. Statistics and Probability Letters, 73, 3, 297–304.
    • Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. Journal of Mathematical Imaging and...
    • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27, 832–837.
    • Wagner, T. (1975). Nonparametric estimates of probability densities. IEEE Transactions on Information Theory IT, 21, 438–440.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno