Ir al contenido

Documat


Geometric constraints on quadratic Bézier curves using minimal length and energy

  • Autores: Young Joon Ahn, Christoph Hoffmann, Paul Rosen
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 255, Nº 1, 2014, págs. 887-897
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2013.07.005
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper derives expressions for the arc length and the bending energy of quadratic Bézier curves. The formulas are in terms of the control point coordinates. For fixed start and end points of the Bézier curve, the locus of the middle control point is analyzed for curves of fixed arc length or bending energy. In the case of arc length this locus is convex. For bending energy it is not. Given a line or a circle and fixed end points, the locus of the middle control point is determined for those curves that are tangent to a given line or circle. For line tangency, this locus is a parallel line. In the case of the circle, the locus can be classified into one of six major types. In some of these cases, the locus contains circular arcs. These results are then used to implement fast algorithms that construct quadratic Bézier curves tangent to a given line or circle, with given end points, that minimize bending energy or arc length.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno