Ir al contenido

Documat


Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems

  • Autores: Winfried Auzinger, Othmar Koch, Mechthild Thalhammer
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 255, Nº 1, 2014, págs. 384-403
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2013.04.043
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this work, defect-based local error estimators for higher-order exponential operator splitting methods are constructed and analyzed in the context of time-dependent linear Schrödinger equations. The technically involved procedure is carried out in detail for a general three-stage third-order splitting method and then extended to the higher-order case. Asymptotical correctness of the a posteriori local error estimator is proven under natural commutator bounds for the involved operators, and along the way the known (non)stiff order conditions and a priori convergence bounds are recovered. The theoretical error estimates for higher-order splitting methods are confirmed by numerical examples for a test problem of Schrödinger type. Further numerical experiments for a test problem of parabolic type complement the investigations.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno