Ir al contenido

Documat


Finite difference methods for the Infinity Laplace and P-Laplace equations

  • Autores: Adam M. Oberman
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 254, Nº 1, 2013 (Ejemplar dedicado a: Nonlinear Elliptic Differential Equations, Bifurcation, Local Dynamics of Parabolic Systems and Numerical Methods), págs. 65-80
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2012.11.023
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We build convergent discretizations and semi-implicit solvers for the Infinity Laplacian and the game theoretical p-Laplacian. The discretizations simplify and generalize earlier ones. We prove convergence of the solution of the Wide Stencil finite difference schemes to the unique viscosity solution of the underlying equation.Webuild a semi-implicit solver, which solves the Laplace equation as each step. It is fast in the sense that the number of iterations is independent of the problem size. This is an improvement over previous explicit solvers, which are slow due to the CFL condition.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno