Ir al contenido

Documat


Comparison of supervised learning techniques for atmospheric pollutant monitoring in a Kraft pulp mill

  • Autores: Matthieu Sainlez, Georges Heyen
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 246, Nº 1, 2013, págs. 329-334
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2012.06.026
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, supervised learning techniques are compared to predict nitrogen oxide (NOx) pollutant emission from the recovery boiler of a Kraft pulp mill. Starting from a large database of raw process data related to a Kraft recovery boiler, we consider a regression problem in which we are trying to predict the value of a continuous variable.

      Generalization is done on the worst case configuration possible to make sure the model is adequate: the training period concerns stationary operations while test periods mainly focus on NOx emissions during transient operations. This comparison involves neural network techniques (i.e., multilayer perceptron and NARX network), tree-based methods and multiple linear regression. We illustrate the potential of a dynamic neural approach compared to the others in this task.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno