Ir al contenido

Documat


Preservation of Hopf bifurcation for neutral delay-differential equations by 0-methods

  • Autores: Huan Su, Wenxue Li, Xiaohua Ding
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 248, Nº 1, 2013, págs. 76-87
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2013.01.020
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper considers the preservation of Hopf bifurcation of some neural delay-differential equations by è-method. By analyzing the dynamics of the numerical discrete system derived by è-method, we show that è-method could inherit the Hopf bifurcation and the asymptotical stability for sufficiently small stepsize h = 1/m, wheremis a positive integer.

      In particular, for è = 1/2 the result holds for any stepsize h = 1/m. Furthermore, the stability of the closed invariant curve is established. Finally, some numerical examples are illustrated to support the analytic results.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno