Ir al contenido

Documat


A modified dimensional split preconditioner for generalized saddle point problems

  • Autores: Yang Cao, Lin-Quan Yao, Mei-Qun Jiang
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 250, Nº 1, 2013, págs. 70-82
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2013.02.017
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For large and sparse saddle point linear systems arising from 2D linearized Navier�Stokes equations, Benzi and Guo recently studied a dimensional split (DS) preconditioner (Appl.

      Numer. Math. 61 (2011) 66�76). By further applying it to generalized saddle point problems, in this paper we present a modified dimensional split (MDS) preconditioner. This new preconditioner is based on a splitting of the generalized saddle point matrix, resulting in an unconditional convergent fixed-point iteration. The basic iteration is accelerated by a Krylov subspace method like restarted GMRES. The implementation of the MDS preconditioner is discussed and a similar case is also analyzed. Finally, numerical experiments of a model Navier�Stokes problem are presented to illustrate the effectiveness of the MDS preconditioner.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno