Ir al contenido

Documat


Anosov flows and dynamical zeta functions

  • Autores: Paolo Giulietti, Carlangelo Liverani, Mark Pollicott
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 178, Nº 2, 2013, págs. 687-773
  • Idioma: inglés
  • DOI: 10.4007/annals.2013.178.2.6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the Ruelle and Selberg zeta functions for C r Anosov flows, r>2 , on a compact smooth manifold. We prove several results, the most remarkable being (a) for C 8 flows the zeta function is meromorphic on the entire complex plane; (b) for contact flows satisfying a bunching condition (e.g., geodesic flows on manifolds of negative curvature better than 1 9 -pinched), the zeta function has a pole at the topological entropy and is analytic in a strip to its left; (c) under the same hypotheses as in (b) we obtain sharp results on the number of periodic orbits. Our arguments are based on the study of the spectral properties of a transfer operator acting on suitable Banach spaces of anisotropic currents


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno