Ir al contenido

Documat


Resumen de Poincaré Series of some Hypergraph Algebras

Eric Emtander, Ralf Fröberg Árbol académico, F. Mohammadi, Somayeh Moradi

  • A hypergraph H=(V,E), where V={x1,…,xn} and E⊆2V defines a hypergraph algebra RH=k[x1,…,xn]/(xi1⋯xik;{i1,…,ik}∈E). All our hypergraphs are d-uniform, i.e., |ei|=d for all ei∈E. We determine the Poincaré series PRH(t)=∑∞i=1dimkTorRHi(k,k)ti for some hypergraphs generalizing lines, cycles, and stars. We finish by calculating the graded Betti numbers and the Poincaré series of the graph algebra of the wheel graph.


Fundación Dialnet

Mi Documat