Ir al contenido

Documat


Weighted estimates for dyadic paraproducts and t -Haar multipliers with complexity (m,n)

  • Autores: J.C. Moraes, M. C. Pereyra
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 57, Nº 2, 2013, págs. 265-294
  • Idioma: inglés
  • DOI: 10.5565/publmat_57213_01
  • Enlaces
  • Resumen
    • We extend the de nitions of dyadic paraproduct and t-Haar multipliers to dyadic operators that depend on the complexity (m; n), for m and n natural numbers.

      We use the ideas developed by Nazarov and Volberg to prove that the weighted L2(w)-norm of a paraproduct with complexity (m; n), associated to a function b 2 BMOd, depends linearly on the Ad2 -characteristic of the weight w, linearly on the BMOd-norm of b, and polynomially on the complexity. This argument provides a new proof of the linear bound for the dyadic paraproduct due to Beznosova. We also prove that the L2-norm of a t-Haar multiplier for any t 2 R and weight w is a multiple of the square root of the Cd 2t-characteristic of w times the square root of the Ad2 -characteristic of w2t, and is polynomial in the complexity.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno