Ir al contenido

Documat


Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation

  • Autores: Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Timothy McCoy, Andrew J. Sommese
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 237, Nº 1, 2013, págs. 326-334
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2012.06.001
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider a free boundary problem modeling tumor growth where the model equations include a diffusion equation for the nutrient concentration and the Stokes equation for the proliferation of tumor cells. For any positive radius R, it is known that there exists a unique radially symmetric stationary solution. The proliferation rate ì and the cell-to-cell adhesiveness ã are two parameters for characterizing ��aggressiveness�� of the tumor. We compute symmetry-breaking bifurcation branches of solutions by studying a polynomial discretization of the system. By tracking the discretized system, we numerically verified a sequence of ì/ã symmetry breaking bifurcation branches. Furthermore, we study the stability of both radially symmetric and radially asymmetric stationary solutions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno