Ir al contenido

Documat


WeFeelFine as Resource for Unsupervised Polarity Classification

  • Autores: Arturo Montejo Ráez Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 50, 2013, págs. 29-36
  • Idioma: inglés
  • Enlaces
  • Resumen
    • español

      En este trabajo se presenta una soluci´on no supervisada al problema de la clasificaci´on de la polaridad en micro-blogs. La propuesta no s´olo no necesita de entrenamiento, sino que se construye a partir de las propias publicaciones de millones de usuarios en la web. Los resultados muestran la efectividad de esta propuesta, abriendo la puerta a una nueva forma de afrontar el an´alisis de sentimientos en micro-blogs

    • English

      This papers shows the results obtained by a non supervised method in the task of sentiment polarity detection on micro-blogs. This method does not need of training, but it also is self-constructed from millions of publications on the web.

      The results show the effectiveness of the proposal, openining a new way of facing sentiment analysis in micro-blogs

  • Referencias bibliográficas
    • Agarwal, N., H. Liu, J. Salerno, and S. Sundarajan. 2008. Understanding group interaction in blogosphere: a case study. In Proc 2nd international...
    • Asiaee T., Amir, Mariano Tepper, Arindam Banerjee, and Guillermo Sapiro. 2012. If you are happy and you know it... tweet. In Proceedings of...
    • Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebastiani. 2010. Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and...
    • Balahur, A. and M. Turchi. 2012. Multilingual sentiment analysis using machine translation? WASSA 2012, page 52.
    • Boldrini, Ester, Alexandra Balahur, Patricio Martínez-Barco, and Andrés Montoyo. 2010. Emotiblog: a finer-grained and more precise learning...
    • Chen, L., W. Wang, M. Nagarajan, S. Wang, and A.P. Sheth. 2012. Extracting diverse sentiment expressions with targetdependent polarity from...
    • Gabrilovich, E. and S. Markovitch. 2007. Computing semantic relatedness using wikipedia-based explicit semantic analysis. In Proceedings of...
    • Go, A., R. Bhayani, and L. Huang. 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pages...
    • Kamvar, Sepandar D. and Jonathan Harris. 2011. We feel fine and searching the emotional web. In Proceedings of the fourth ACM international...
    • Kouloumpis, E., T. Wilson, and J. Moore. 2011. Twitter sentiment analysis: The good the bad and the omg. In Proceedings of the Fifth International...
    • Lin, Y., J. Zhang, X. Wang, and A. Zhou. 2012. An information theoretic approach to sentiment polarity classification. In Proceedings of the...
    • Martínez-Cámara, E., M.T. Martín-Valdivia, L.A. Ure˜na López, and A. Montejo-Ráez. In press. Sentiment analysis in twitter. Natural Language...
    • Pang, B. and L. Lee. 2008. Opinion Mining and Sentiment Analysis. Now Publishers.
    • Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: sentiment classification using machine learning techniques. In Proceedings...
    • Reyes, A., P. Rosso, and D. Buscaldi. 2012. From humor recognition to irony detection: The figurative language of social media. Data and Knowledge...
    • Schler, J., M. Koppel, S. Argamon, and J. Pennebaker. 2006. Effects of Age and Gender on Blogging. In Proc. of AAAI Spring Symposium on Computational...
    • Tan, L.K.W., J.C. Na, Y.L. Theng, and K. Chang. 2012. Phrase-level sentiment polarity classification using rulebased typed dependencies and...
    • Turney, Peter D. 2002. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno