Ir al contenido

Documat


From Human Activity to Conceptual Understanding of the Chain Rule

  • Autores: Zingiswa Mybert Monica Jojo, Aneshkumar Maharaj
  • Localización: REDIMAT, ISSN-e 2014-3621, Vol. 2, Nº. 1, 2013, págs. 77-99
  • Idioma: inglés
  • Títulos paralelos:
    • De la actividad humana a la comprensión conceptual de la Regla de la Cadena
  • Enlaces
  • Resumen
    • español

      Este artículo presenta un estudio sobre la construcción de la definición del concepto de regla de la cadena en el cálculo diferencial en el marco de estudiantes de primer año de ingeniería, en la Universidad Tecnológica de Sudáfrica. Se utiliza el enfoque APOS (Acción-Proceso-Objeto-Esquema) para explorar la comprensión conceptual que los estudiantes muestran en el aprendizaje de la regla de la cadena en cálculo. Se utilizaron fichas de trabajo estructuradas basadas en una instrucción diseñada para inducir la construcción de la comprensión conceptual de la regla de la cadena. Una parte de los estudiantes usaron utilizaron la técnica "directa" para diferenciar tareas complicadas, mientras que muy pocos de ellos utilizaron o bien el método de la conexión, o bien el enfoque de Leibniz, como técnicas de resolución. De esta manera se logró diferenciar cada una de las funciones simples en las funciones compuestas presentadas. Los estudiantes operaron tanto en las etapas inter, como intra, de la triada. Se encontró que incluso aquellos estudiantes con una comprensión no adecuada de las funciones compuestas, aplicaron la regla de la cadena correctamente.

    • English

      This article reports on a study which investigated first year university engineering students� construction of the definition of the concept of the chain rule in differential calculus at a University of Technology in South Africa. An APOS (Action-Process-Objects-Schema) approach was used to explore conceptual understanding displayed by students in learning the chain rule in calculus. Structured worksheets based on instruction designed to induce construction of conceptual understanding of the chain rule were used. A number of students used the straight form technique in differentiating complicated tasks while very few used either the link and Leibniz form techniques. In this manner differentiation of each function within the composite function was accomplished. Students either operated in the Inter- or Trans stages of the Triad. It was found that even students who had inadequate understanding of composition of functions, performed well in the application of the chain rule.

  • Referencias bibliográficas
    • Asiala, M., Brown, A., Devries, D.J., Dubinsky E., Mathews, D., & Thomas, K. (2004). A Framework for Research and Curriculum Development...
    • Brijlall, D. & Maharaj, A. (2009). An APOS analysis of students’ construction of the concept of continuity of a single-valued function....
    • Burke, M., Erickson, D., Lott, J. W., & Obert, M. (2001 ). Navigating Through Algebra in Grades 9-12. Reston, VA: National Council...
    • Carpenter, T. P., & Lehrer, R. (1 999). Teaching and Learning Mathematics with understanding. In E. Fennema & T. A. Romberg (Eds.),...
    • Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, T., & Vidakovic, D. (1 997). Constructing...
    • Cottrill, J. (1 999). Students’ understanding of the concept ofchain rule in first year calculus and the relation to their understanding...
    • Dubinsky, E. (1 991 a). Reflective Abstraction in Advanced Mathematical Thinking. In David O. Tall (Ed.), Advanced Mathematical Thinking...
    • Dubinsky, E., (1 991 b). Constructive aspects of Reflective Abstraction in Advanced Mathematics. In L. Stef e (Ed.), Epistemological Foundation...
    • Dubinsky, E. (201 0). Plenary Speech. In Proceedings of the eighteenth annual meeting of the SAARMSTE: School of Science, Mathematics and...
    • Dubinsky, E. & McDonald M.A. (2001 ). APOS: A constructivist theory of learning in Undergraduate Mathematics Education Research in...
    • Gordon, S.P. (2005). Discovering the chain rule graphically. Mathematics and Computer Education, 39(3 ), 1 95-1 97.
    • Hassani, S. (1 998). Calculus students’ knowledge of the composition of functions and the chain rule. Unpublished doctoral dissertation,...
    • Hiebert, J., & Carpenter, T. P. (1 992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics...
    • Hiebert, J., & Lefevre, P. (1 986). Conceptual and Procedural Knowledge in Mathematics: An Introductory Analysis. In D. Hiebert (Ed.)...
    • Jojo, Z.M.M. (2011 ). An APOS exploration of the conceptual understanding of the chain rule in calculus by first year engineering students....
    • Kaplan, W. (1 984). Derivatives and diferentials ofcomposite functions’ and ‘the general chain rule’ in advanced calculus. (3...
    • Maharaj, A. (201 0). An APOS Analysis of Students’ understanding of the Concept of a Limit function. Pythagoras, 71...
    • Pirie, S., & Kieren, T. (1 994). Growth in mathematical understanding: How can we characterize it and how can we represent it? Educational...
    • Orton, A. (1 983 ). Students’ Understanding of Dif erentiation, Educational Studies in Mathematics, 14, 235-250. Retrieved from:...
    • Star, J. R. (2000). On the Relationship between Knowing and Doing in Procedural Learning. In B. Fishman & S. O'Connor-Divelbiss...
    • Uygur,T., & Ozdas,A. (2007). The ef ect of arrow diagrams on achievement in applying the chain rule. Primus, 17(2), 1 31 -1 47....
    • Webster, R. J. (1 978). The efects of emphasizing composition and decomposition of various types of composite functions on the attainment...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno