Ir al contenido

Documat


The new class of Kummer beta generalized distributions

  • Autores: Rodrigo R. Pescim, Gauss Moutinho Cordeiro, Clarice Garcia Borges Demétrio, Edwin M. M. Ortega, Saralees Nadarajah
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 36, Nº. 2, 2012, págs. 153-180
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes.We define and study a new class of distributions called the Kummer beta generalized family to extend the normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions.

      Some special models are discussed. The ordinary moments of any distribution in the new family can be expressed as linear functions of probability weighted moments of the baseline distribution.

      We examine the asymptotic distributions of the extreme values. We derive the density function of the order statistics, mean absolute deviations and entropies. We use maximum likelihood estimation to fit the distributions in the new class and illustrate its potentiality with an application to a real data set.

  • Referencias bibliográficas
    • Abramowitz, M. and Stegun, I. A. (1968). Handbook of Mathematical Functions. Dover Publications, New York.
    • Ahsanullah, M. and Nevzorov, V. B. (2005). Order Statistics: Examples and Exercises. Nova Science Publishers, Inc, Hauppauge, New York.
    • Alexander, C., Cordeiro, G. M., Ortega, E. M. M. and Sarabia, J. M. (2012). Generalized beta-generated distributions. Computational Statistics...
    • Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992). A First Course in Order Statistics. John Wiley and Sons, New York.
    • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 31, 171-178.
    • Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of Quality Technology, 27, 154-161.
    • Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81,...
    • David, H. A. and Nagaraja, H. N. (2003). Order Statistics, third edition. John Wiley and Sons, Hoboken, New Jersey.
    • Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. (1953). Higher Transcendental Functions, volume I. McGraw-Hill Book Company,...
    • Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications. Communication in Statistics-Theory and Methods,...
    • Gordy, M. B. (1998). Computationally convenient distributional assumptions for common-value actions. Computational Economics, 12, 61-78.
    • Gradshteyn I. S. and Ryzhik I. M. (2000). Table of Integrals, Series, and Products. Academic Press, San Diego.
    • Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters...
    • Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications Statistics-Theory and...
    • Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma andWeibull distributions. Biometrical Journal,...
    • Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. John Wiley and Sons, New York.
    • Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1987). Extremes and Related Properties of Random Sequences and Process. Springer Verlag,...
    • Lieblein J. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep-groove ball bearings. Journal of Research National...
    • Mudholkar, G. S, Srivastava, D. K. and Friemer, M. (1995). The exponential Weibull family: A reanalysis of the bus-motor failure data. Technometrics,...
    • Nadarajah, S. and Gupta, A. K. (2004). The beta Fréchet distribution. Far East Journal of Theoretical Statistics, 15, 15-24.
    • Nadarajah, S. and Gupta, A. K. (2007). A generalized gamma distribution with application to drought data. Mathematics and Computer in Simulation,...
    • Nadarajah, S. and Kotz, S. (2004). The beta Gumbel distribution. Mathematical Problems in Engineering, 10, 323-332.
    • Nadarajah, S. and Kotz, S. (2005). The beta exponential distribution. Reliability Engineering and System Safety, 91, 689-697.
    • Nadarajah, S. and Kotz, S. (2006). The exponentiated type distribution. Acta Applicandae Mathematicae, 92, 97-111.
    • Ng, K. W. and Kotz, S. (1995). Kummer-gamma and Kummer-beta univariate and multivariate distributions. Research Report, 84, Department of...
    • Paranaı́ba, P. F., Ortega, E. M. M., Cordeiro, G. M. and Pescim, R. R. (2011). The beta Burr XII distribution with application to lifetime...
    • Pescim, R. R., Demétrio, C. G. B., Cordeiro, G. M., Ortega, E. M. M. and Urbano, M. R. (2010). The beta generalized half-normal distribution....
    • R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    • Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics,...
    • Shannon, C. E. (1951). Prediction and entropy of printed English. The Bell System Technical Journal, 30, 50-64.
    • Stasinopoulos, D. M. and Rigby, R. A. (2007). Generalized additive models for location, scale and shape (GAMLSS) in R. Journal of Statistical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno