Ir al contenido

Documat


On developing ridge regression parameters: a graphical investigation

  • Autores: Gisela Muniz, Golam Kibria Kibria, Kristofer Mansson, Ghazi Shukur
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 36, Nº. 2, 2012, págs. 115-138
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we review some existing and propose some new estimators for estimating the ridge parameter. All in all 19 different estimators have been studied. The investigation has been carried out using Monte Carlo simulations. A large number of different models have been investigated where the variance of the random error, the number of variables included in the model, the correlations among the explanatory variables, the sample size and the unknown coefficient vector were varied. For each model we have performed 2000 replications and presented the results both in term of figures and tables. Based on the simulation study, we found that increasing the number of correlated variable, the variance of the random error and increasing the correlation between the independent variables have negative effect on the mean squared error. When the sample size increases the mean squared error decreases even when the correlation between the independent variables and the variance of the random error are large. In all situations, the proposed estimators have smaller mean squared error than the ordinary least squares and other existing estimators.

  • Referencias bibliográficas
    • Alkhamisi, M., Khalaf, G. and Shukur, G. (2006). Somemodifications for choosing ridge parameters.Communications in Statistics-Theory and Methods,...
    • Alkhamisi, M. and Shukur, G. (2008). Developing ridge parameters for SUR model. Communications in Statistics-Theory and Methods, 37(4), 544–564.
    • Dempster, A. P., Schatzoff, M. and Wermuth, N. (1977). A simulation study of alternatives to ordinary least squares. Journal of the American...
    • Frisch, R. (1934). Statistical Confluence Analysis by Means of Complete Regression Systems, Publication 5 (Oslo: University Institute of Economics,...
    • Galton, Sir Francis. (1885). Regression towards mediocrity in heredity stature. Journal of Anthropological Institute, 15, 246–263.
    • Gibbons, D. G. (1981). A simulation study of some ridge estimators. Journal of the American Statistical Association, 76, 131–139.
    • Hocking, R. R., Speed, F. M. and Lynn, M. J. (1976). A class of biased estimators in linear regression. Technometrics, 18, 425–438.
    • Hoerl, A. E. and Kennard, R. W. (1970a). Ridge regression: biased estimation for non-orthogonal problems. Technometrics, 12, 55–67.
    • Hoerl, A. E. and Kennard, R. W. (1970b). Ridge regression: application to non-orthogonal problems, Technometrics, 12, 69–82.
    • Hoerl, A. E., Kennard, R. W. and Baldwin, K. F. (1975). Ridge regression: some simulation. Communications in Statistics, 4, 105–123.
    • Khalaf, G. and Shukur, G. (2005). Choosing ridge parameters for regression problems. Communications in Statistics-Theory and Methods, 34,...
    • Kibria, B. M. G. (2003). Performance of some new ridge regression estimators Communications in Statistics-Theory and Methods, 32, 419–435.
    • Lawless, J. F. and Wang, P. (1976). A simulation study of ridge and other regression estimators. Communications in Statistics A, 5, 307–323.
    • McDonald, G. C. and Galarneau, D. I. (1975). A Monte Carlo evaluation of some ridge-type estimators. Journal of the American Statistical Association,...
    • Montgomery, D. C., Peck, E. A. and Vining, G. G. (2001). Introduction to Linear Regression Analysis, Third Edition, John Wiley, New York.
    • Muniz, G. and Kibria, B. M. G. (2009). On some ridge regression estimators: an empirical comparisons. Communications in Statistics-Simulation...
    • Myers, R. H. (1990). Classical and Modern Regression with Applications, second edition. Duxbury. Belmont, CA.
    • Newhouse, J. P. and Oman, S. D. (1971). An Evaluation of Ridge Estimators. Rand Corporation, P716-PR.
    • Singh, S. and Tracy, D. S. (1999). Ridge-regression using scrambled responses. Metrika, 147–157.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno