Ir al contenido

Documat


Reduced Basis Techniques for Stochastic Problems

  • Autores: Sébastien Boyaval, Claude Le Bris, Tony Lelièvre, Yvon Maday Árbol académico, Ngoc-Cuong Nguyen, Anthony T. Patera
  • Localización: Archives of computational methods in engineering: state of the art reviews, ISSN 1134-3060, Vol. 17, Nº. 4, 2010, págs. 435-454
  • Idioma: inglés
  • DOI: 10.1007/s11831-010-9056-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We report here on the recent application of a now classical general reduction technique, the Reduced-Basis (RB) approach initiated by C. Prud�homme et al. in J. Fluids Eng. 124(1), 70�80, 2002, to the specific context of differential equations with random coefficients. After an elementary presentation of the approach, we review two contributions of the authors: in Comput. Methods Appl. Mech. Eng. 198(41�44), 3187�3206, 2009, which presents the application of the RB approach for the discretization of a simple second order elliptic equation supplied with a random boundary condition, and in Commun. Math. Sci., 2009, which uses a RB type approach to reduce the variance in the Monte-Carlo simulation of a stochastic differential equation. We conclude the review with some general comments and also discuss possible tracks for further research in the direction


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno