Ir al contenido

Documat


The structure of a local embedding and Chern classes of weighted blow-ups

  • Autores: Anca M. Mustata, Andrei Mustata
  • Localización: Journal of the European Mathematical Society, ISSN 1435-9855, Vol. 14, Nº 6, 2012, págs. 1739-1794
  • Idioma: inglés
  • DOI: 10.4171/jems/346
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For a proper local embedding between two Deligne--Mumford stacks Y and X , we find, under certain mild conditions, a new (possibly non-separated) Deligne--Mumford stack X ' , with an etale, surjective and universally closed map to the target X , and whose fiber product with the image of the local embedding is a finite union of stacks with corresponding etale, surjective and universally closed maps to Y . Moreover, a natural set of weights on the substacks of X ' allows the construction of a universally closed push-forward, and thus a comparison between the Chow groups of X ' and X . We apply the construction above to the computation of the Chern classes of a weighted blow-up along a regular local embedding via deformation to a weighted normal cone and localization. We describe the stack X ' in the case when X is the moduli space of stable maps with local embeddings at the boundary. We apply the methods above to find the Chern classes of the stable map spaces.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno