Ir al contenido

Documat


Calabi-Yau domains in three manifolds

  • Autores: Francisco Martín Serrano Árbol académico
  • Localización: American journal of mathematics, ISSN 0002-9327, Vol. 134, Nº 5, 2012, págs. 1329-1344
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that for every smooth compact Riemannian three-manifold $\overline{W}$ with nonempty boundary, there exists a smooth properly embedded one-manifold $\Delta \subset W={\rm Int}(\overline{W})$, each of whose components is a simple closed curve and such that the domain ${\mathcal D} = W - \Delta$ does not admit any properly immersed open surfaces with at least one annular end, bounded mean curvature, compact boundary (possibly empty) and a complete induced Riemannian metric.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno