Ir al contenido

Documat


The construction of doubly periodic minimal surfaces via balance equations

  • Autores: Peter Connor, Matthias Weber
  • Localización: American journal of mathematics, ISSN 0002-9327, Vol. 134, Nº 5, 2012, págs. 1275-1301
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Using Traizet's regeneration method, we prove the existence of many new 3-dimensional families of embedded, doubly periodic minimal surfaces. All these families have a foliation of ${\Bbb R}^3$ by vertical planes as a limit. In the quotient, these limits can be realized conformally as noded Riemann surfaces, whose components are copies of $\Bbb{C}^*$ with finitely many nodes. We derive the balance equations for the location of the nodes and exhibit solutions that allow for surfaces of arbitrarily large genus and number of ends in the quotient.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno