Ir al contenido

Documat


A numerical study of variable depth KdV equations and generalizations of Camassa-Holm-like equations

  • Autores: Marc Duruflé, Samer Israwi
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 236, Nº 17, 2012, págs. 4149-4165
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2012.05.010
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we numerically study the KdV-top equation and compare it with the Boussinesq equations over uneven bottoms. We use here a finite-difference scheme that conserves a discrete energy for the fully discrete scheme. We also compare this approach with the discontinuous Galerkin method. For the equations obtained in the case of stronger nonlinearities and related to the Camassa�Holm equation, we find several finite difference schemes that conserve a discrete energy for the fully discrete scheme. Because of its accuracy for the conservation of energy, our numerical scheme is also of interest even in the simple case of flat bottoms.Wecompare this approach with the discontinuous Galerkin method.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno