Ir al contenido

Documat


Isolated singularities of binary differential equations of degree "n"

  • Autores: T. Fukui, J.J. Nuños Ballesteros
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 56, Nº 1, 2012, págs. 65-89
  • Idioma: inglés
  • DOI: 10.5565/publmat_56112_03
  • Enlaces
  • Resumen
    • We study isolated singularities of binary differential equations of degree n which are totally real. This means that at any regular point, the associated algebraic equation of degree n has exactly n different real roots (this generalizes the so called positive quadratic differential forms when n = 2). We introduce the concept of index for isolated singularities and generalize Poincar´e-Hopf theorem and Bendixson formula. Moreover, we give a classification of phase portraits of the n-web around a generic singular point. We show that there are only three types, which generalize the Darbouxian umbilics D1, D2 and D3.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno