Ir al contenido

Documat


Generalized spatio-temporal models

  • Autores: Edilberto Cepeda Cuervo Árbol académico
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 35, Nº. 2, 2011, págs. 165-178
  • Idioma: inglés
  • Enlaces
  • Resumen
    • An important problem in statistics is the study of spatio-temporal data taking into account the effect of explanatory variables such as latitude, longitude and time. In this paper, a new Bayesian approach for analyzing spatial longitudinal data is proposed. It takes into account linear time regression structures on the mean and linear regression structures on the variance-covariance matrix of normal observations. The spatial structure is included in the time regression parameters and also in the regression structure of the variance covariance matrix. Initially, we present a summary of the spatial models and the Bayesian methodology used to fit the models, as a extension of the longitudinal data analysis. Next, the general spatial temporal model is proposed.

      Finally, this proposal is used to study rainfall data.

  • Referencias bibliográficas
    • Cepeda, E. C. (2001). Variability modelling in generalized linear models. Unpublished Ph.D. thesis, Mathematics Institute, Universidade Federal...
    • Cepeda, E. C. and Gamerman D. (2004). Bayesian modelling of joint regression for the mean and covariance matrix. Biometrical Journal, 14,...
    • Cepeda-Cuervo, E. and Núñez-Antón, V. (2009). Bayesian modelling of the mean and covariance matrix in normal nonlinear models. Journal...
    • Cepeda-Cuervo, E. (2005). Bayesian methodology for modelling parameters in the two parameter exponential family. Revista Estadı́stica, 57(168-169).
    • Diggle, P. and Verbyla, A. (1999). Nonparametric estimation of covariance structure in longitudinal date. Biometrics, 54, 401–415.
    • Gabriel, K. R. (1962). Ante-dependence analysis of an ordered set of variables. Annals of Mathematical Statistics, 33, 201–212.
    • Gamerman, D. (1997a). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall: London.
    • Gamerman, D. (1997b). Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7, 57–68.
    • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images. IEEE Trans. on Pattern Analysis...
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 57, 97–109.
    • Macchiavelli, R. E. and Arnold, S. F. (1994). Variable order antedependence models. Communications in Statistics, 23, 2683–2699.
    • Macchiavelli, R. and E. B. Moser (1997). Analysis of repeated measures with ante-dependence models. Biometrical Journal, 39(3), 339–350.
    • Pan, J. and MacKenzie G (2006). Regression models for covariance structures in longitudinal studies. Statistical Modelling, 6(1), 43–57.
    • Pourahmadi, M. (1999). Joint mean-covariancemodels with applications to longitudinal data: Unconstrained parameterizations. Biometrika, 86,...
    • Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika, 87,...
    • Stein, M. (1999). Interpolation of Spatial Data. Springer: New York.
    • Zimmerman, D. and Núñez-Antón, V. (1997). Structured antedependence models for longitudinal data, in Modelling Longitudinal and Spatially...
    • Wolnger (eds.), 63–76. Lecture Notes in Statistics No. 122. Springer: New York.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno