Nicolai Krylov, Edwin L. Rogers
We have considered the process of inscribing triangles between parallel lines in the Euclidean plane using an iterative process. It is a familiar result that the limiting triangle is equilateral. In this Note, we demonstrate that the same result holds when the geometry is hyperbolic and the lines are asymptotically parallel. We further extend the process to the sphere, where it is found that the limiting triangle is isosceles.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados