Ir al contenido

Documat


Towards Semi-Supervised Learning of Semantic Spatial Concepts for Mobile Robots

  • Autores: Jesús Martínez Gómez Árbol académico, Barbara Caputo
  • Localización: JoPha: Journal of Physical Agents, ISSN-e 1888-0258, Vol. 4, Nº. 3, 2010, págs. 19-31
  • Idioma: inglés
  • DOI: 10.14198/jopha.2010.4.3.03
  • Enlaces
  • Resumen
    • The ability of building robust semantic space representations of environments is crucial for the development of truly autonomous robots. This task, inherently connected with cognition, is traditionally achieved by training the robot with a supervised learning phase. We argue that the design of robust and autonomous systems would greatly benefit from adopting a semi-supervised online learning approach. Indeed, the support of open-ended, lifelong learning is fundamental in order to cope with the dazzling variability of the real world, and online learning provides precisely this kind of ability. Here we focus on the robot place recognition problem, and we present an online place classification algorithm that is able to detect gap in its own knowledge based on a confidence measure. For every incoming new image frame, the method is able to decide if (a) it is a known room with a familiar appearance, (b) it is a known room with a challenging appearance, or (c) it is a new, unknown room. Experiments on ImageCLEF database and a subset of the challenging COLD database show the promise of our approach.

  • Referencias bibliográficas
    • [1] Lakoff, G. (1990). Women, fire and dangerous things: What categories reveal about the mind. The University of Chicago Press.
    • [2] Orabona, F., Castellini, C., Caputo, B., Luo, J., & Sandini, G. (2007). Indoor place recognition using online independent support...
    • [3] Ullah, M., Orabona, F., Caputo, B., IRISA, I., & Rennes, F. (2009). You live, you learn, you forget: Continuous learning of visual...
    • [4] Pronobis, A., & Caputo, B. (2007). Confidence-based cue integration for visual place recognition. In Proceedings of IROS 2007.
    • [5] Pronobis, A., & Caputo, B. (2009). COLD: COsy Localization Database. The International Journal of Robotics Research (IJRR), 28(5).
    • [6] Siagian, C., & Itti, L. (2007). Biologically-inspired robotics vision Monte Carlo localization in the outdoor environment. In Proceedings...
    • [7] Pronobis, A., Martínez Mozos, O., & Caputo, B. (2008). SVM-based discriminative accumulation scheme for place recognition. In Proceedings...
    • [8] Murillo, A. C., Kosecka, J., Guerrero, J. J., & Sagues, C. (2008). Visual door detection integrating appearance and shape cues. Robotics...
    • [9] Valgren, C., & Lilienthal, A. J. (2007). SIFT, SURF, and seasons: Long-term outdoor localization using local features. In Proceedings...
    • [10] Thrun, S., & Mitchell, T. (1995). Lifelong robot learning. Robotics and Autonomous Systems, 15.
    • [11] Mitchell, T. (2006). The discipline of machine learning (CMU Tech. Rep. CMU-ML-06-108).
    • [12] Malak, J. R., & Khosla, P. K. (2001). A framework for the adaptive transfer of robot skill knowledge using reinforcement learning...
    • [13] Konidaris, G., & Barto, A. G. (2006). Autonomous shaping: Knowledge transfer in reinforcement learning. In Proceedings of the 23rd...
    • [14] Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining, 2(2).
    • [15] Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines (and other kernel-based learning methods)....
    • [16] Downs, T., Gates, K. E., & Masters, A. (2001). Exact simplification of support vector solutions. Journal of Machine Learning Research,...
    • [17] Engel, Y., Mannor, S., & Meir, R. (2002). Sparse online greedy support vector regression. In Proceedings of ECML’02.
    • [18] Cauwenberghs, G., & Poggio, T. (2000). Incremental and decremental support vector machine learning. In Proceedings of NIPS’00, 409–415.
    • [19] Bach, F. R., & Jordan, M. I. (2005). Predictive low-rank decomposition for kernel methods. In Proceedings of ICML’05.
    • [20] Engel, Y., Mannor, S., & Meir, R. (2004). The kernel recursive least squares algorithm. IEEE Transactions on Signal Processing, 52(8).
    • [21] Keerthi, S. S., & DeCoste, D. (2005). A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine...
    • [22] Keerthi, S. S., Chapelle, O., & DeCoste, D. (2006). Building support vector machines with reduced classifier complexity. Journal...
    • [23] Crammer, K., Kandola, J., & Singer, Y. (2003). Online classification on a budget. In Advances in Neural Information Processing Systems...
    • [24] Weston, J., Bordes, A., & Bottou, L. (2005). Online (and offline) on an even tighter budget. In R. G. Cowell & Z. Ghahramani...
    • [25] Kivinen, J., Smola, A., & Williamson, R. (2004). Online learning with kernels. IEEE Transactions on Signal Processing, 52(8), 2165–2176.
    • [26] Cheng, L., Vishwanathan, S. V. N., Schuurmans, D., Wang, S., & Caelli, T. (2007). Implicit online learning with kernels. In Advances...
    • [27] Dekel, O., Shalev-Shwartz, S., & Singer, Y. (2007). The Forgetron: A kernel-based perceptron on a budget. SIAM Journal on Computing,...
    • [28] Ruping, S. (2004). A simple method for estimating conditional probabilities for SVMs. Citeseer.
    • [29] Platt, J. C. (1999). Probabilistic outputs for support vector machines. In P. Bartlett, B. Schoelkopf, B. Schurmans, & A. J. Smola...
    • [30] Lin, H., Lin, C., & Weng, R. (2007). A note on Platt’s probabilistic outputs for support vector machines. Machine Learning, 68(3),...
    • [31] Anguelov, D., Koller, D., Parker, E., & Thrun, S. (2004). Detecting and modeling doors with mobile robots. In Proceedings of the...
    • [32] Canny, J. (1987). A computational approach to edge detection. In Readings in Computer Vision: Issues, Problems, Principles, and Paradigms...
    • [33] Ballard, D. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 12(2), 111–122.
    • [34] Pronobis, A., Fornoni, M., Christensen, H. I., & Caputo, B. (2010). The robot vision track at ImageCLEF 2010. In Working Notes of...
    • [35] Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories....
    • [36] Bosch, A., Zisserman, A., & Munoz, X. (2007). Representing shape with a spatial pyramid kernel. In Proceedings of the 6th ACM International...
    • [37] Bosch, A., Zisserman, A., & Munoz, X. (2007). Image classification using random forests and ferns. In International Conference on...
    • [38] Ojala, T., Pietikainen, M., & Maenpaa, T. (2000). Gray scale and rotation invariant texture classification with local binary patterns....
    • [39] Shechtman, E., & Irani, M. (2007). Matching local self-similarities across images and videos. In IEEE Conference on Computer Vision...
    • [40] Linde, O., & Lindeberg, T. (2004). Object recognition using composed receptive field histograms of higher dimensionality. In Proceedings...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno