Ir al contenido

Documat


Convergence rates of derivatives of a family of barycentric rational interpolants

  • Autores: Jean Paul Berrut, Michael S. Floater, Georges Klein
  • Localización: Applied numerical mathematics, ISSN-e 0168-9274, Vol. 61, Nº. 9, 2011, págs. 989-1000
  • Idioma: inglés
  • DOI: 10.1016/j.apnum.2011.05.001
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In polynomial and spline interpolation the k-th derivative of the interpolant, as a function of the mesh size h, typically converges at the rate of O(hd+1-k) as h?0, where d is the degree of the polynomial or spline. In this paper we establish, in the important cases k=1,2, the same convergence rate for a recently proposed family of barycentric rational interpolants based on blending polynomial interpolants of degree d.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno