Zhu Shengfeng, Wu Qingbiao, Chunxiao Liu
The aim of this paper is to propose a variational piecewise constant level set method for solving elliptic shape and topology optimization problems. The original model is approximated by a two-phase optimal shape design problem by the ersatz material approach. Under the piecewise constant level set framework, we first reformulate the two-phase design problem to be a new constrained optimization problem with respect to the piecewise constant level set function. Then we solve it by the projection Lagrangian method. A gradient-type iterative algorithm is presented. Comparisons between our numerical results and those obtained by level set approaches show the effectiveness, accuracy and efficiency of our algorithm.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados