Ir al contenido

Documat


Extending controlled tabular adjustment for non-additive tabular data with negative protection levels

  • Autores: Jordi Castro Pérez Árbol académico
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 35, Nº. 1, 2011, págs. 3-20
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Minimum distance controlled tabular adjustment (CTA) is a recent perturbative methodology for the protection of tabular data. An implementation of CTA was recently used by Eurostat for the protection of European Union level structural business and animal production statistics. The realworld instances to be solved forced the classical CTA model to be extended with two features:

      first, to deal with non-additive tables; second, and most important, to consider negative protection levels. The latter extension means a significant modification of the classical CTA mixed integer linear model. We present and compare new models for these extensions. Computational results are reported using a set of real-world instances, and two state-of-the-art commercial solvers (CPLEX and Xpress).

  • Referencias bibliográficas
    • Castro, J. (2005). Quadratic interior-point methods in statistical disclosure control.Computational Management Science, 2(2), 107–121.
    • Castro, J. (2006). Minimum-distance controlled perturbation methods for large-scale tabular data protection. European Journal of Operational...
    • Castro, J. (2007a). A shortest-paths heuristic for statistical data protection in positive tables.INFORMS Journal on Computing, 19(4), 520–533.
    • Castro, J. (2007b). An interior-point approach for primal block-angular problems.Computational Optimization and Applications, 36, 195–219.
    • Castro, J. and Baena, D. (2008). Using a mathematical programming modeling language for optimal CTA. Lecture Notes in Computer Science, 5262,...
    • Castro, J. and Giessing, S. (2006). Testing variants of minimum distance controlled tabular adjustment. In Monographs of Official Statistics....
    • Castro, J., Gonźalez, J. A. and Baena, D. (2009). User’s and programmer’s manual of the RCTA package. Technical Report DR 2009/01, Dept....
    • Cox, L. H., Kelly, J. P. and Patil, R. (2004). Balancing quality and confidentiality for multivariate tabular data.Lecture Notes in Computer...
    • Dandekar, R. A., and Cox, L. H. (2002). Synthetic tabular data: an alternative to complementary cell suppression. Manuscript, Energy Information...
    • Domingo-Ferrer, J. and Franconi, L. (eds.) (2006).Lecture Notes in Computer Science. Privacy in Statistical Databases, 4302, Springer, Berlin.
    • Domingo-Ferrer, J. and Saigin, Y. (eds.) (2008).Lecture Notes in Computer Science. Privacy in Statistical Databases, 5262, Springer, Berlin.
    • Fair Isaac Corporation Dash Xpress (2008).Xpress Optimizer. Reference Manual, release 19.0.0.
    • Fourer, R., Gay, D. M. and Kernighan, D. W. (2002).AMPL: A Modeling Language for Mathematical Programming, Duxbury Press.
    • Giessing, S., Hundepool, A. and Castro, J. (2009). Roundingmethods for protecting EU-aggregates. In Worksession on statistical data confidentiality....
    • Gonźalez, J. A. and Castro, J. (2011). A heuristic block coordinate descent approach for controlled tabular adjustment.Computers & Operations...
    • IBM ILOG CPLEX (2009),User’s Manual for CPLEX v12.1.
    • Salazar-Gonźalez, J. J. (2006). Controlled rounding and cell perturbation: statistical disclosure limitation methods for tabular data.Mathematical...
    • Willenborg, L. and de Waal, T. (2000).Lecture Notes in Statistics. Elements of Statistical Disclosure Control, 155, Springer, New York.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno