Ir al contenido

Documat


Positive rational interpolatory quadrature formulas on the unit circle and the interval

  • Autores: Karl Deckers, Adhemar Bultheel Árbol académico, Ruymán Cruz Barroso, Francisco José Perdomo Pío
  • Localización: Applied numerical mathematics, ISSN-e 0168-9274, Vol. 60, Nº. 12, 2010, págs. 1286-1299
  • Idioma: inglés
  • DOI: 10.1016/j.apnum.2010.03.018
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We present a relation between rational Gauss-type quadrature formulas that approximate integrals of the form View the MathML source, and rational Szego" quadrature formulas that approximate integrals of the form View the MathML source. The measures ? and View the MathML source are assumed to be positive bounded Borel measures on the interval [-1,1] and the complex unit circle respectively, and are related by View the MathML source. Next, making use of the so-called para-orthogonal rational functions, we obtain a one-parameter family of rational interpolatory quadrature formulas with positive weights for J?(F). Finally, we include some illustrative numerical examples.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno