Ir al contenido

Documat


Minkowski-type inequalities for means generated by two functions and a measure

  • Autores: László Losonczi, Zsolt Páles
  • Localización: Publicationes Mathematicae Debrecen, ISSN 0033-3883, Tomus 78, Fasc. 3-4, 2011, págs. 743-753
  • Idioma: inglés
  • DOI: 10.5486/pmd.2011.5017
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Given two continuous functions f; g : I ! R such that g is positive and f=g is strictly monotone, and a probability measure  on the Borel subsets of [0; 1], the two variable mean Mf;g; : I2 ! I is de ned by Mf;g;(x; y) := ( f g )..1 (�ç �ç 1 0 f ( tx + (1 .. t)y ) d(t) �ç �ç 1 0 g ( tx + (1 .. t)y ) d(t) ) (x; y 2 I):

      The aim of this paper is to study Minkowski-type inequalities for these means, i.e., to nd conditions for the generating functions f0; g0 : I0 ! R, f1; g1 : I1 ! R, . . . , fn; gn : In ! R, and for the measure  such that Mf0;g0;(x1 +    + xn; y1 +    + yn)  [] Mf1;g1;(x1; y1) +    +Mfn;gn;(xn; yn) holds for all x1; y1 2 I1, . . . , xn; yn 2 In with x1 +    + xn; y1 +    + yn 2 I0.

      The particular case when the generating functions are power functions, i.e., when the means are generalized Gini means is also investigated.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno