Ir al contenido

Documat


Minería de opiniones basada en características guiadas por Ontologías

  • Autores: Isidro Peñalver Martínez, Francisco García Sánchez Árbol académico, Rafael Valencia García Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 46, 2011, págs. 91-98
  • Idioma: español
  • Enlaces
  • Resumen
    • español

      El éxito de la Web Social ha tenido un gran impacto en la sociedad actual y en distintas áreas de investigación. En este trabajo se propone un nuevo método para la minería de opiniones que emplea técnicas tradicionales de procesamiento de lenguaje natural junto con procesos de análisis sentimental y tecnologías de la Web Semántica. Los principales objetivos de la metodología propuesta son mejorar la minería de opiniones basada en características empleando ontologías en la selección de las mismas, así como proporcionar un nuevo método para el análisis sentimental basado en análisis vectorial.

    • English

      The boom of the Social Web has had a big impact on a number of different research topics. In particular, the possibility to extract various kinds of added-value, informational elements from users’ opinions has attracted researchers from the information retrieval and computational linguistics fields. However, current approaches to so-called opinion mining suffer from a series of drawbacks. In this paper we propose an innovative methodology for opinion mining that brings together traditional natural language processing techniques with sentimental analysis processes and Semantic Web technologies. The main goals of this methodology is to improve feature-based opinion mining by employing ontologies in the selection of features and to provide a new method for sentimental analysis based on vector analysis.

  • Referencias bibliográficas
    • Andreevskaia, A. y S. Bergler. 2006. “Mining wordnet for a fuzzy sentiment: Sentiment tag extraction from wordnet glosses,” Proceedings of...
    • Apostol, T.M. 2006. “Mathematical Analysis,” Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, U.S.A.
    • Balahur A. y A. Montoyo. 2009. “Semantic Approaches to Fine and Coarse-Grained Feature-Based Opinion Mining”, In Proceedings NLDB 2009, LNCS...
    • Baccianella, S., A. Esuli, y F. Sebastiani. 2009. “Multi-facet rating of product reviews,” ECIR ’09: Proceedings of the 31th European Conference...
    • Dave, K., S. Lawrence, y D. M. Pennock. 2003. “Mining the peanut gallery: opinion extraction and semantic classification of product reviews,”...
    • Esuli, A. y F. Sebastiani. 2005. “Determining the semantic orientation of terms through gloss classification,” CIKM ’05: Proceedings of the...
    • Esuli, A. y F. Sebastiani. 2006. ”Sentiwordnet: A publicly available lexical resource for opinion mining”. En: Proceedings of 5th Conference...
    • Goldberg, A. B. y X. Zhu. 2006. “Seeing stars when there aren’t many stars: graph-based semi-supervised learning for sentiment categorization,”...
    • Hatzivassiloglous, V. y K. R. McKeown. 1997. “Predicting the semantic orientation of adjectives,” Proceedings of the eighth conference on...
    • Hu, M. y B. Liu. 2004. “Mining and summarizing customer reviews,” KDD ’04: Proceedings of the tenth ACM SIGKDD international conference on...
    • Kamps, J. y M. Marx. 2002. “Words with attitude,” 1st International WordNet Conference, pp. 332–341.
    • Kim, S. y E. Hovy. 2004. “Determining the sentiment of opinions,” COLING ’04: Proceedings of the 20th international conference on Computational...
    • Moreno, A., F. Pineda y R. Hidalgo. 2010. “Análisis de Valoraciones de Usuario de Hoteles con Sentitext: un sistema de análisis de sentimiento...
    • Mukras, R. y J. Carroll. 2004. “A comparison of machine learning techniques applied to sentiment classification”.
    • Pang et al. 2002. “Sentiment Classification using machine learning methods”. En EMNLP-2002.
    • Pang, B. y L. Lee. 2004. “A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts”', In Proceedings...
    • Shimada, K. y T. Endo. 2008. “Seeing several stars: A rating inference task for a document containing several evaluation criteria,” PAKDD...
    • Studer, R., V. R. Benjamins y D. Fensel. 1998. Knowledge engineering: Principles and methods, Data Knowl. Eng., vol. 25, pp. 161-197.
    • Turney, P. D. y M. L. Littman. 2003. “Measuring praise and criticism: Inference of semantic orientation from association,” ACM Trans. Inf....
    • Zhao, L. y C. Li. 2009. “Ontology based opinion mining for movie reviews,” in Proc. of KSEM, pp. 204–214.
    • Zhou, L. y P. Chaovalit. 2008. “Ontologysupported polarity mining,” Journal of the American Society for Information Science and Technology,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno