Ir al contenido

Documat


Conformal structure of minimal surfaces with finite topology

  • Autores: Jacob Bernstein, Christine Breiner
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 86, Nº 2, 2011, págs. 353-381
  • Idioma: inglés
  • DOI: 10.4171/cmh/226
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we show that a complete, embedded minimal surface in R3, with finite topology and one end, is conformal to a once-punctured compact Riemann surface. Moreover, using this conformal structure and the embeddedness of the surface, we examine the Weierstrass data and conclude that every such surface has Weierstrass data asymptotic to that of the helicoid. More precisely, if g is the stereographic projection of the Gauss map, then in a neighborhood of the puncture, g(p)=exp(i?z(p)+F(p)), where ??R, z=x3+ix?3 is a holomorphic coordinate defined in this neighborhood and F(p) is holomorphic in the neighborhood and extends over the puncture with a zero there. As a consequence, the end is asymptotic to a helicoid. This completes the understanding of the conformal and geometric structure of the ends of complete, embedded minimal surfaces in R3 with finite topology.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno