Marta Casanellas Rius , Robin Hartshorne
In this paper we prove that, for every r = 2, the moduli space MsX (r; c1,c2) of rank r stable vector bundles with Chern classes c1 = rH and c2 = 1/2 (3r2 - r) on a nonsingular cubic surface X ? P3 contains a nonempty smooth open subset formed by ACM bundles, i.e. vector bundles with no intermediate cohomology. The bundles we consider for this study are extremal for the number of generators of the corresponding module (these are known as Ulrich bundles), so we also prove the existence of indecomposable Ulrich bundles of arbitrarily high rank on X.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados