Ir al contenido

Documat


Parametric Bing and Krasinkiewicz maps: revisited

  • Autores: Vesko Valov
  • Localización: Proceedings of the American Mathematical Society, ISSN 0002-9939, Vol. 139, Nº 2, 2011, págs. 747-756
  • Idioma: inglés
  • DOI: 10.1090/s0002-9939-2010-10724-4
  • Enlaces
  • Resumen
    • Let be a complete metric -space such that for any metric compactum the function space contains a dense set of Bing (resp., Krasinkiewicz) maps. It is shown that has the following property: If is a perfect surjection between metric spaces, then with the source limitation topology contains a dense -subset of maps such that all restrictions , , are Bing (resp., Krasinkiewicz) maps. We apply the above result to establish some mapping theorems for extensional dimension.

      -------------------------------------------------------------------------------- References:

      1.

      T. Banakh and V. Valov, General Position Properties in Fiberwise Geometric Topology, arXiv:math.GT/10012522.

      2.

      T. Banakh and V. Valov, Approximation by light maps and parametric Lelek maps, Topol. Appl. 157 (2010), 2325-2431.

      3.

      A. Chigogidze and V. Valov, Extension dimension and -spaces, Bull. London Math. Soc. 34, 6 (2002), 708-716. MR 1924198 (2003e:55001) 4.

      A. N. Dranishnikov, Extending mappings into -complexes, Mat. Sb. 182, 9 (1991), 1300-1310 (in Russian); translation in Math. USSR. Sb. 74, 1 (1993), 47-56. MR 1133570 (93a:55002) 5.

      A. N. Dranishnikov, The Eilenberg-Borsuk theorem for mappings into an arbitrary complex, Mat. Sb. 185, 4 (1994), 81-90. MR 1272187 (95j:54028) 6.

      A. N. Dranishnikov and V. V. Uspenskij, Light maps and extensional dimension, Topol. Appl. 80, 1-2 (1997), 91-99. MR 1469470 (98j:54060) 7.

      J. Dydak, Cohomological dimension and metrizable spaces, Trans. Amer. Math. Soc. 337, 1 (1993), 219-234. MR 1153013 (93g:55001) 8.

      J. Dydak, Cohomological dimension and metrizable spaces. II, Trans. Amer. Math. Soc. 348, 4 (1996), 1647-1661. MR 1333390 (96h:55001) 9.

      J. Krasinkiewicz, On mappings with hereditarily indecomposable fibres, Bull. Polish Acad. Sci. Math. 44 (1996), 147-156. MR 1416420 (97g:54016) 10.

      J. Krasinkiewicz, On approximation of mappings into -manifolds, Bull. Polish Acad. Sci. Math. 44, 4 (1996), 431-440. MR 1420956 (97k:54011) 11.

      M. Levin, Bing maps and finite-dimensional maps, Fund. Math. 151, 1 (1996), 47-52. MR 1405520 (97e:54031) 12.

      M. Levin, On extensional dimension of maps, Topol. Appl. 103 (2000), 33-35. MR 1746915 (2001k:54058) 13.

      M. Levin, On extensional dimension of metrizable spaces, preprint.

      14.

      M. Levin and W. Lewis, Some mapping theorems for extensional dimension, Israel J. Math. 133 (2003), 61-76. MR 1968422 (2004d:54032) 15.

      E. Matsuhashi, Krasinkiewicz maps from compacta to polyhedra, Bull. Pol. Acad. Sci. Math. 54, 2 (2006), 137-146. MR 2266144 (2007i:54036) 16.

      E. Matsuhashi, Parametric Krasinkiewicz maps, cones and polyhedra, preprint.

      17.

      E. Matsuhashi and V. Valov, Krasinkiewicz spaces and parametric Krasinkiewicz maps, arXiv:math.GN/08024436.

      18.

      B. Pasynkov, On geometry of continuous maps of countable functional weight, Fundam. Prikl. Matematika 4, 1 (1998), 155-164 (in Russian). MR 1786441 (2001i:54039) 19.

      J. Song and E. Tymchatyn, Free spaces, Fund. Math. 163 (2000), 229-239. MR 1758326 (2001g:54011) 20.

      M. Tuncali and V. Valov, On dimensionally restricted maps, Fund. Math. 175, 1 (2002), 35-52. MR 1971237 (2004b:54061) 21.

      V. Valov, Parametric Bing and Krasinkiewicz maps, Topol. Appl. 155, 8 (2008), 916-922. MR 2406399 (2009e:54052) -------------------------------------------------------------------------------- Similar Articles:

      Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 54F15, 54F45, 54E40 Retrieve articles in all Journals with MSC (2010): 54F15, 54F45, 54E40 -------------------------------------------------------------------------------- Additional Information:

      Vesko Valov Affiliation: Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada Email: veskov@nipissingu.ca DOI: 10.1090/S0002-9939-2010-10724-4 PII: S 0002-9939(2010)10724-4 Keywords: Bing maps, Krasinkiewicz maps, continua, metric spaces, absolute neighborhood retracts, extensional dimension Received by editor(s): December 22, 2008 Received by editor(s) in revised form: January 6, 2009 Posted: September 24, 2010 Additional Notes: The author was partially supported by NSERC Grant 261914-08.

      Communicated by: Alexander N. Dranishnikov Copyright of article: Copyright 2010, American Mathematical Society The copyright for this article reverts to public domain after 28 years from publication.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno