Ir al contenido

Documat


Optimal inverse Beta (3,3) transformation in kernel density estimation

  • Autores: Catalina Bolancé Losilla Árbol académico
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 34, Nº. 2, 2010, págs. 223-237
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A double transformation kernel density estimator that is suitable for heavy-tailed distributions is presented. Using a double transformation, an asymptotically optimal bandwidth parameter can be calculated when minimizing the expression of the asymptotic mean integrated squared error of the transformed variable. Simulation results are presented showing that this approach performs better than existing alternatives. An application to insurance claim cost data is included.

  • Referencias bibliográficas
    • Bolanće, C., Guilĺen, M. and Nielsen, J. P. (2009). Transformation kernel estimation of insurance claim cost distribution, in Corazza,...
    • Bolanće, C., Guilĺen, M. and Nielsen, J. P. (2008). Inverse Beta transformation in kernel density estimation. Statistics & Probability...
    • Bolanće, C., Guilĺen, M. and Nielsen, J. P. (2003). Kernel density estimation of actuarial loss functions. Insurance: Mathematics and...
    • Bolanće, C., Guilĺen, M., Pelican, E. and Vernic, R. (2008). Skewed bivariate models and nonparametric estimation for CTE risk measure.Insurance:...
    • Buch-Larsen, T., Guillen, M., Nielsen, J. P. and Bolancé, C. (2005). Kernel density estimation for heavytailed distributions using the Champernowne...
    • Clements, A. E., Hurn, A. S. and Lindsay, K. A. (2003). Möbius-like mappings and their use in kernel density estimation.Journal of the American...
    • Degen, M. and Embrechts, P. (2008). EVT-based estimation ofrisk capital and convergence of high quantiles.Advances in Applied Probability,...
    • Jones, M. C. (1990). Variable kernel density estimation andvariable kernel density estimation.Australian Journal of Statistics, 32, 361-371.
    • Silverman, B. W. (1986).Density Estimation for Statistics and Data Analysis. London: Chapman & Hall.
    • Terrell, G. R. (1990). The maximal smoothing principle in density estimation.Journal of the American Statistical Association, 85, 270-277.
    • Terrell, G. R. and Scott, D. W. (1985). Oversmoothed nonparametric density estimates.Journal of the American Statistical Association, 80,...
    • Wand, M. P. and Jones, M. C. (1995).Kernel Smoothing.London: Chapman & Hall.
    • Wand, P., Marron, J. S. and Ruppert, D. (1991). Transformations in density estimation.Journal of the Americal Statistical Association, 86,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno